(C)	Obtain	an	expression	for	transfer	gain	of	an
	amplific	Obtain an expression fo mplifier with feedback.						4

(D) State advantages of negative feedback.

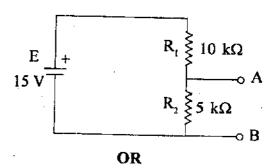
OR

- (P) What are different types of Noise? Explain thermal noise.
- (Q) Draw circuit diagram of two stage RC-coupled amplifier. Discuss its gain-frequency response.
- (R) Explain effect of series negative feedback on an input impedance of the amplifier. 4
- (S) A voltage gain the amplifier is reduced from 60 to 15 due to negative feedback. What is feedback factor?
- 5. (A) Define transducer. Why is it needed? Distinguish between a passive transducer and an active transducer with suitable example.
 - (B) Draw block diagram of function generator and explain working of each block in brief. 8

OR

- (P) What are inductive transducers? Discuss construction, working and characteristics of LVDT.
- (Q) Draw block diagram of general purpose CRO and explain function of each block.

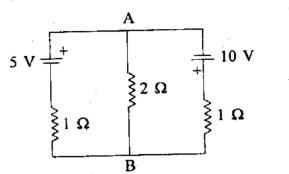
M.Sc. (Semester—II) (CBCS Scheme) Examination PHYSICS


2 PHY-4 (i)

(Network Theorems and Solid State Devices)

Time—Three Hours]

Maximum Marks-80


- 1. (A) Discuss various steps involved in solving network by using Norton's theorem.
 - (B) Explain superposition theorem with suitable example.
 - (C) Obtain Norton's equivalent circuit of the network given below:

- (P) State and explain Maximum power transfer theorem. 5
- (Q) Explain with phase diagram, the relationship for voltage and current in resistance and capacitor under ac signal.

325

(R) Find out the current through '2 Ω ' resistor using superposition theorem for the following circuit.

- 2. (A) What are extrinsic semiconductors? Explain mechanism of current flow through the semiconductor.
 - (B) Discuss an avalanche breakdown and zener breakdown.
 - (C) Explain the construction and working of UJT.
 - (D) Distinguish between JFET and BJT. 4

OR

- (P) Explain the use of UJT as relaxation oscillator.
- (Q) A battery of 8 V is connected between bases of UJT. If intrinsic stand off ratio of UJT is 0.6, find the value of peak point voltage.

- (R) Explain the terms 'Depletion region' and 'Potential barrier' for p-n junction.
- (S) Give the construction and uses of LED.
- (A) Explain with circuit diagram, the working of twodiode full wave rectifier. Obtain an expression for its ripple factor and rectification efficiency.
 - (B) Explain the construction, working and characteristics of SCR.

OR

- (P) Draw block diagram of regulated power supply.

 Discuss in detail working of Zener regulator circuit with respect to line voltage and load variations.
- (Q) Explain the use of IC-317 as adjustable voltage regulator. Design an adjustable voltage regulator using IC-317 for output voltage $V_0 = 5 \text{ V}$ to 12 V. Given: Current limiting resistor, $R_1 = 240 \Omega$, $V_{\text{ref}} = 1.25 \text{ V}$. Neglect adjustment terminal current.
- 4. (A) Classify amplifiers on the basis of position of an operating point.
 - (B) Obtain the values of collector current and collector voltage of CE-transistor if $V_{cc}=10$ V, $R_{B}=500$ k Ω , RL=2 k Ω , $\beta_{dc}=100$.

UBS-51116 3 (Contd.)