AU-302

(Contd.)

M.Sc. Semester-II (CBCS Scheme) Examination

PHYSICS

Paper-2-PHY-3

(Solid State Physics)

Time: Three Hours1 [Maximum Marks: 80 Note: — All questions are compulsory and carry equal marks. (a) Define crystalline and polycrystalline solids. 4 (b) What is Wigner-Seitz cell? Explain its construction. 5 (c) Show that five-fold symmetry cannot exist in crystals. OR (p) Explain in detail glide and roto-inversion symmetries. 6 (q) Explain possible symmetry operations in two dimensions and enlist the Bravais lattices in 2D. 7 3 (r) What is space group? 2. Derive Laue's equations and show that they lead to Bragg's condition of X-ray diffraction. 7 (b) Discuss drawback of rotating crystal method. 2 (c) Derive relation for geometric structure factor. Comment on the intensity and conditions for getting X-ray diffraction peaks in BCC crystal structure. 7 OR 2 (p) Define geometrical structure factor. Deduce an expression for atomic scattering factor. 7 Discuss the powder X-ray diffraction technique to study crystal structure of solids.

1

VOX-38039

www.sgbauonline.com

3.	(a)	Explain analytical method to determine lattice parameters.	9
	(b)	Describe in detail use of inclastic neutron scattering to study phonon dispersion relation	. 7
		OR	
	(p)	What is the reciprocal lattice? Show that the fcc lattice is the reciprocal lattice of the blattice.	ec 8
	(q)	Express Bragg's equation in terms of reciprocal lattice vector.	8
4.	(a)	Derive frequency and wave function associated with localised lattice vibrations.	6
	(b)	Derive a relation for binding energy of ionic crystal in terms of Madelung constant α .	6
	(c)	Discuss the thermal conductivity of solids.	4
		OR	
	(p)	Derive dispersion relation for diatomic chain lattice.	6
	(q)	Show that, in optical branch, atoms of different masses move in opposite direction a amplitude is inversely proportional to their masses.	nd 6
	(r)	Explain the nature of interatomic forces and enlist types of crystals.	4
5.	(a)	What is Dulong and Petit law?	3
	(b)	Give Debye's Theory of Heat Capacity.	13
		OR	
	(p)	Discuss the variation of specific heat with temperature,	4
	(q)	Give Einstein's theory of heat capacity.	12