M.A./M.Sc. (Semester—II) (CBCS Scheme) Examination STATISTICS

(Advanced Probability Theory)

Paper-V

Time: Three Hours]

|Maximum Marks : 80

Note: — Answer either (A) or (B) in each question.

- 1. (A) (a) Define:
 - (i) Random variable
 - (ii) Probability space
 - (iii) Expectation of random variable.
 - (b) State and prove Borel-Cantelli Lemma.

6+10

OR

- (B) (p) Define mutual independence and pairwise independence of three events. Show that pairwise independence does not imply mutual independence.
 - (q) State and prove Chebyshev's inequality.

8+8

- (A) (a) Define convergence in probability. Show that convergence in probability implies convergence in distribution.
 - (b) Let $\{Y_n\}$ be an arbitrary sequence of r.v. then Y_n converges to zero in probability iff

$$E\left[\frac{|Y_n|^r}{1+|Y_n|^r}\right] \to 0 \text{ for some } r \ge 0 \text{ as } n \to \infty.$$

OR

- (B) (p) Define convergence almost sure and convergence in probability for a sequence of random variables.
 - (q) Show that $X_n \xrightarrow{a.s} X$ iff:

$$\lim_{n\to\infty} P\left[\sup_{m\geq n} |X_m - X| > \epsilon\right] = 0 \text{ for some } \epsilon > 0.$$

- (r) Define convergence in rth mean. Show by means of an example convergence in probability does not imply convergence in rth mean.

 5+5+6
- 3. (A) (a) Define characteristic function of a random variable. State and prove any three properties of characteristic function.
 - (b) State and prove Inversion theorem. Obtain probability density function of a random variable whose characteristic function is given by $\phi_X(t) = e^{i\mu t \frac{1}{2}\sigma^2 t^2}$. 6+10

OR

WPZ—3452 1 (Contd.)

- (B) (p) Comment on the following statements:
 - (i) $\phi_{X+Y}(t) = \phi_X(t) \cdot \phi_Y(t)$ implies X and Y are independent.
 - (ii) Characteristic function is affected by change of origin and scale.
 - (q) Obtain the characteristic function of a Cauchy distribution with probability density function as $f(x) = \frac{1}{\pi(1+x^2)}$, $-\infty < x < \infty$.
 - (r) Find characteristic function of Poisson distribution.

8 + 5 + 3

- (A) (a) Distinguish between weak and strong law of large numbers for a sequence of random variables.
 - (b) State and prove necessary and sufficient condition for a sequence to obey WLLN.

8 + 8

OR

- (B) (p) State and prove Khinchia's law of large numbers.
 - (q) State Kolmogorov's strong law of large numbers.

8 - 8

5. (A) (a) State and prove Liapounoff's Central Limit theorem.

16

OR

- (B) (p) Explain multivariate form of Central Limit theorem.
 - (q) Explain the role of Central Limit theorem in different fields.

8+8