AU - 326

# M.A./M.Sc. Semester—II (CBCS Scheme) Examination STATISTICS

## (Testing of Hypothesis)

## Paper—VI

Time: Three Hours] [Maximum Marks: 80

Note: Answer either (A) or (B) in each question.

- 1. (A) (i) Define the following terms:
  - (a) Critical region
  - (b) Two types of error
  - (c) Level of significance
  - (d) Power of test.
  - (ii) Define MP test and UMP test.

8-8

### OR

- (B) (i) Describe p-value concept in testing of hypothesis. Compare it with critical value concept.
  - (ii) State NP lemma and prove its necessary part.

 $6 \pm 10$ 

- (A) (i) Construct UMP α level test for testing the hypothesis H<sub>0</sub>: θ ≤ θ, against H<sub>1</sub>: θ > θ<sub>2</sub> for B(n, 0), where n is known and θ is unknown and let x be the random variable representing no. of successes.
  - (ii) Define Monotone Likelihood Ratio (MLR) property and show that  $X \sim U(0, \theta)$  with  $\theta > 0$  has MLR property in T(x).

#### OR

- (B) (i) State and prove Karlin-Rubin theorem.
  - (ii) Obtain UMP  $\alpha$  level test of testing  $H_0: \theta \le \theta_0$  against  $H_1: \theta > \theta_0$ , where the r.s. of size n are from Poisson distribution with unknown parameter  $\theta$ .

VOX—38585 1 (Contd.)

- 3. (A) (i) Construct LR test of size  $\alpha$  for  $X \sim B(n, p)$  to test the hypothesis  $H_0: P \leq P_0$  against  $H_0: P > P_0$ .
  - (ii) Describe Pearson's χ² test for goodness of fit.

8-8

OR

(B) (i) Given a r.s. of size n from the population with pdf:

$$f(x, \theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & ; 0 < x < \infty \\ 0 & ; \text{ otherwise} \end{cases}$$

Obtain LR test of size  $\alpha$  for testing  $H_{\alpha}$ :  $\theta = \theta_{\alpha}$  against  $H_{\alpha}$ :  $\theta \neq \theta_{\alpha}$ .

(ii) Describe Wald's test.

8-8

- 4. (A) (i) Prove that SPRT terminates with probability one.
  - (ii) Define SPRT for testing  $H_0: \theta = \theta$ , against  $H_0: \theta = \theta$ ,  $(\theta_0 \ge \theta_0)$ , where  $\theta$  is the parameter of Poisson distribution. Find the expression for OC function.

0R

- (B) (i) Obtain SPRT for testing  $H_0$ :  $\theta = \theta_0$  against  $H_1$ :  $\theta = \theta_0$  ( $\theta \ge \theta_0$ ). The samples are drawn from normal distribution where  $\sigma$  is known. Also obtain ASN function.
  - (ii) Describe OC function for SPRT.

8±8

- 5. (A) (i) Define:
  - (a) Unbiased test
  - (b) Completeness
  - (c) Bounded completeness.
  - State and prove necessary and sufficient condition for every similar test to have Neyman structure

OR

- (B) (i) For X N( $\theta$ ,  $\sigma^2$ ), construct UMPU test for testing H<sub>1</sub>:  $\theta_1 < \theta < \theta_2$  against H<sub>1</sub>:  $\theta < \theta_1$ , or  $\theta > \theta_2$ .
  - (ii) Show that every UMP test is unbiased test.

 $8 \pm 8$ 

VOX-38585

2

125