- (c) Explain PSI BLAST algorithm steps.
- (d) Explain phenetic and cladistic approach of phylogenetic analysis. 5

OR

- (p) Describe molecular clock hypothesis.
- (q) Explain distance method of phylogenetic analysis.
- (r) What is EMBOSS? Explain features of EMBOSS. 5
- (s) Define phylogenetic tree. Explain types of trees. 5
- 5. Define secondary structure of protein. Describe any two methods of secondary structure prediction.

OR

What is tertiary structure of protein? Describe homology modelling and ab-initio method of structure prediction.

Third Semester M. Sc. (Part-II) Examination

BIOTECHNOLOGY

3 BTB 3

Paper - XI

Biostatistics and Bioinformatics

P. Pages: 4

Time: Three Hours]

[Max. Marks: 100

Note: (1) All questions are compulsory and carry equal marks.

- (2) Draw well labelled diagram wherever necessary.
- 1. Find the mean, mode, median, variance and standard deviation of following data

Height in cms	70 - 75	75 - 80	80 - 85	85 - 90	90 - 95	95 - 100	100 - 105	105 - 110	110-115
No. of									
Children	3	4	7	7	15	9	6	• 6	3

OR

What is probability? Give laws of probability and calculate the probability of a card drawn at random from any ordinary pack of cards is

(i) A black card.

AQ-1053

P.T.O.

(ii)	A Jack.	. 3. A	ttempt :
•	A Club. A king of club.	(6	a) What are scoring matrices? Give their limitations.
(v)		(1	Define sequence alignment. Give its type and significance.
			e) Explain steps of FASTA algorithm. 5
2. Exp	plain :—		d) Define MSA. Give progressive alignment approach used for MSA.
(a)	Methods of deposition of data to databases. 5	機能を受ける。	OR
(b)	Explain primary protein sequence database with an example.	(I	b) Define Homology. Explain different homologous relationships with an example.
(c)	NCBI as bioinformatics resource. 5		5
(d)	Derived databases with an example. 5	(c)	 Describe steps of Smith – Watermann algorithm.
	OR	(r) Explain basic BLAST programs. 5
(p)	EBI as bioinformatics resource. 5	(s) Features of FASTA format of sequence. 5
(q)	Retrival system at NCBI. 5	数 好	•
(r)	Viral genome databases. 5	4. A	tempt the following:—
(s)	EST as repository for high throughput genomic sequences.	(a	Define comparative genomics. Describe role of synteny in comparative genomics. 5
		(b	What is ExPasy? Describe any one tool for protein sequence analysis at ExPasy. 5
AQ-10	53 2	AQ-10	953 3 P.T.O.