M.Sc. (Part—I) Semester—II (CBCS Scheme) Examination 202: MATHEMATICS

(Advanced Linear Algebra and Field Theory)

Time: Three Hours]

[Maximum Marks: 80

Note: - Solve any ONE question from each unit.

UNIT-I

1. (a) Determine the characteristic roots and the corresponding characteristic vectors of the matrix:

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
3+5=8

- (b) Define: Minimal polynomial. Prove that the minimal polynomial of a matrix is a divisor of every polynomial that annihilates this matrix.
 1+7-8
- 2. (c) Show that the matrix

$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$

is diagonalizable. Also find the diagonal form and diagonalizing matrix P.

4+4=8

- (d) Find all possible Jordan Canonical Forms of matrices whose characteristic polynomial p(x) and minimal polynomial m(x) are as follows:
 - (i) $p(x) = (x-2)^3(x-5)^4$, $m(x) = (x-2)^2(x-5)^2$

(ii)
$$p(x) = (x-3)^6$$
, $m(x) = (x-3)^2$. $4+4=8$

UNIT---II

- 3. (a) Prove that the relation of 'Congruence of matrices' is an equivalence relation in the set of all n × n matrices over a field F.
 - (b) Prove that a real symmetric matrix is positive definite iff all its eigen values are positive.

8

- 4. (c) Show that the quadratic form $6x^2 + 17y^2 + 3z^2 20xy 14yz + 8zx$ in three variables is positive semi-definite.
 - (d) Prove that the number of positive terms in any two normal reductions of a real quadratic form is the same.

UNIT---III

- 5. (a) Show that :
 - (i) $x^3 + 3x + 2 \in \mathbb{Z}/(7)$ |x| is irreducible over the field $\mathbb{Z}/(7)$.
 - (ii) $x^4 + 8 \in Q[x]$ is irreducible over Q. 4+4=8
 - (b) Let $F \subseteq E \subseteq K$ be fields. If $(K : E) < \infty$ and $(E : F) < \infty$ then prove that :
 - (i) $[K:F] < \infty$
 - (ii) $[K : F] = [K : E] \{E : F].$ 4-4-8
- 6. (c) Determine all (i) quadratic (ii) cubic irreducible polynomials over **Z**/(2). 4+4=8
 - (d) Let F be a field. Prove that there exists an extension F that is algebraic over F and is algebraically closed; that is, each field has an algebraic closure.

UNIT--IV

- 7. (a) Prove that the splitting field of $f(x) = x^4 2 \in Q[x]$ over Q is $Q(2^{14}, i)$ and its degree of extension is 8. 5+3=8
 - (b) Prove that if $f(x) \in F[x]$ is irreducible over F, then all roots of f(x) have the same multiplicity.
- 8. (c) Prove that the multiplicative group of non-zero elements of a finite field is cyclic.
 - (d) Let K be a splitting field of the polynomial $f(x) \in F[x]$ over a field F. If E is another splitting field of f(x) over F, then prove that there exists an isomorphism $\sigma : E \to K$ that is identity on F.

UNIT---V

- 9. (a) Prove that following are equivalent statements:
 - (i) $a \in \mathbb{R}$ is constructible from Q.
 - (ii) (a, 0) is a constructible point from $Q \times Q$.
 - (iii) (a, a) is a constructible point from $Q \times Q$.
 - (iv) (0, a) is a constructible point from $Q \times Q$.
 - (b) Prove that every polynomial $f(x) \in \mathbb{C}[x]$ factors into linear factors in $\mathbb{C}[x]$.
- 10. (c) Let F be a field, and let U be a finite subgroup of the multiplicative group F* = F {0}.
 Then prove U is cyclic.
 - (d) Prove that the group $G(Q(\alpha)/Q)$, where $\alpha^3 = 1$ and $\alpha \neq 1$, is isomorphic to the cyclic group of order 4.