AU-378

M.Sc. (Part-II) Semester-III (CBCS) Examination

MATHEMATICS

(General Relativity)

Paper-305

Time: Three Hours]

[Maximum Marks: 80

Note: Solve FIVE questions selecting ONE from each unit.

UNIT-I

- 1. (a) Obtain the expression for the symmetric energy momentum tensor T_{mn} by using the action integral $S_F = \int_{V_4} L_F \sqrt{-g} \, d_x^4$ for a mechanical system.
 - (b) Prove that the Einstein's field equations can be written in the form :

$$R_{mn} = k \left(T_{mn} - \frac{1}{2} g_{mn} \right).$$

2. (c) Obtain the Einstein's field equations from action principle.

- 8

(d) Prove that the Poisson equation:

$$\left(\frac{g_{44}}{c^2}\right)_{\alpha\alpha} = k\rho$$

can be recovered from the Einstein's field equations.

8

UNIT-II

- (a) What is the isotropic form of a line element? Obtain the isotropic form of Schwarzschild exterior solution by using a suitable transformation of co-ordinates.
 - (b) Prove that any spherically symmetric field in vacuo is static.

8

4. (c) Prove that the equation to the planetary orbit is
$$u'' + u = \frac{M}{h^2} + 3Mu^2$$
.

VOX—34881 1 (Contd.)

www.sgbauonline.com

(d) Discuss the 'bending of light rays' due to the gravitation of Sun and prove that the gravitational deflection of light ray is given by:

$$2\alpha = \frac{4\varepsilon}{3R} = \frac{4M}{R} \,.$$

UNIT-III

- 5. (a) Obtain the Schwarzschild interior solution as a simple model of a star. 8
 - (b) Derive the Eddington's form of the Schwarzschild exterior solution.
- 6. (c) Discuss the field of charged mass point. 8
 - (d) Discuss the Boundary conditions in the Schwarzschild interior solution.

UNIT-IV

- 7. Explain the gravitational collapse of dust like sphere.
- 8. Explain how the gravitational collapse of a spherical body leads to the Black hole. 16

UNIT-V

- 9. Discuss the gravitational waves in curved space-time.
- Explain the gravitational waves and give details of the weak gravitational waves in general relativity.

8