M.Sc. Semester-III (C.B.C.S.) Examination PHYSICS

		Paper—3PHY4 (ii) Condensed Matter Physics-I	
Tim	e : 1	Three Hours] [Maximum Marks	: 80
		Note: - ALL questions are compulsory and carry equal marks.	
1.	(a)	Discuss the significance of negative effective mass.	4
	(b)	Give Kronig-Penney model to explain presence of energy level band structure separ	rated
		with forbidden energy gaps.	9
	(c)	Discuss the Bloch function.	3
		OR	
	(p)	Discuss in detail the behaviour of electron in crystal under nearly free elec-	tron
		approximation.	10
	(q)	What is an effective mass?	2
	(r)	Derive relation for an effective mass.	4
2.	(a)	Discuss paramagnetic cooling in detail.	4
	(b)	Explain origin of paramagnetic moment. Give classical theory of paramagnetism.	10
	(c)	What is Larmor precession?	2
		OR	
	(p)	Give quantum theory of diamagnetism.	10
	(q)	Discuss quenching in iron group ions.	4
	(r)	What is magnetic moment?	2
3.	(a)	Derive relation for Bloch T ^{3,2} law.	7
	(b)	Explain Heisenberg model of molecular field in detail.	9
		OR	
	(p)	Give in detail molecular field theory of ferrimagnetisms and explain variation susceptibility with temperature.	n of 7
	(q)	What is spin wave? Derive a dispersion relation.	9
VOX	(34)	887 1 (Co	ontd.)

www.sgbauonline.com

<u>4</u> .	(a)	Discuss antiferroelectricity and piezoelectricity.	6
	(b)	Derive relation for dipole polarisability and discuss its variation with temperature frequency.	e and
		OR	
	(p)	What is ferroelectricity? Derive Currie-Weiss law for ferroelectricity.	10
	(q)	Derive Clausius-Mossotti relation.	6
5.	(a)	Derive the Gintzsberg-Landau equation and discuss flux quantisation.	8
	(b)	Discuss in brief the BCS theory	3
	(c)	Discuss high Te superconductors.	5
		OR	
	(p)	What is the Flux Quantisation? Derive a relation for quantised flux.	8
	(q)	Discuss infrared property of superconductors.	3
	(r)	What is the DC-Josephson effect? Derive a relation for DC current flowing as Josephson junction	eross 5