M.Sc. Part-II (Semester-III) (C.B.C.S.) Examination PHYSICS

Paper-3PHY4 (i) Digital Techniques

		raper—3rd 14 (i) Digital Techniques	
Tim	e : 1	Three Hours [Maximum Marks	: 80
Not	e :—	-(!) ALL questions are compulsory.	
		(2) All questions carry equal marks.	
1.	(A)	Compare different performance parameters of various logic families.	6
	(B)	Draw a circuit of 2-input RTL, TTL NAND gate and find the truth table.	6
	(C)	Explain why CMOS is preferred.	4
		OR	
	(P)	Draw a circuit of NMOS NAND gate. Explain construction and working of it. Vits truth table.	Vrite 6
	(Q)	Explain how a transistor could be used as logic switch.	4
	(R)	Show that NAND gate can be used as universal logic gate.	6
2.	(A)	How quad in K-map eliminates two variables and their compliments? Explain it suitable example.	with 6
	(B)	Explain the working of 4-bit Adder-2-Subtractor Circuit using 7483 and 7486.	6
	(C)	Show that complement of sum is product of complement using appropriate l diagrams.	logic 4
		OR	
	(P)	How pair in K-map eliminates one variable and its compliment? Explain it suitable example.	with 4
	(Q)	Obtain the combinational logic design circuit for 4-bit multiplier using 7483 7408 ICs.	and 6
	(R)	Use K-Map to find the simplest circuit for Full Adder.	6
3.	(A)	Explain with the help of circuit using basic gates the operation of 2-Bit ALU which perform following operations. Explain also the selection circuit for the desired operations.	
		(i) F = Complement of A	
		(ii) $F = A$ and B	
		(iii) $F = A \text{ exor } B$	
		(iv) F = A plus B.	1Ż
VOX	348		ontd.)

www.sgbauonline.com

	(B)	What are multiplexers and De-multiplexers? With circuit diagram using basic pexplain 2:1 line multiplexer and 1:2 demultiplexer operation.	gates 4
		OR	
	(P)	Explain the working of IC 7447 BCD to SSD Decoder with the block diagram external circuit for SSD (Common Anode) and determine the 8-bit codes for displaced, 7, 9 and 1 on the same.	
	(Q)	Define encoder and decoder. Explain 74138 (3:8 decoder) operations. How one realize the same with 1:8 DEMUX?	can
4.	(A)	Draw detailed diagram of master slave flip-flop and label it.	4
	(B)	Determine the number of flip-flops needed to construct a shift register capable sto (a) decimal number upto 32, (b) hexadecimal number upto F.	oring 4
	(C)	Explain working of 7493 with timing diagram.	4
	(D)	Explain control buffers.	4
		OR	
	(P)	How can R.S. Flip-flop be constructed by using NOR gate, explain its working.	4
	(Q)	Explain the working of 4-bit serial in-serial out shift register with neat lediagram.	ogic 4
	(\mathbb{R})	Draw and logic diagram of a ring counter and explain its working.	4
	(S)	Obtain modulo 6 up counter using JKMSFF.	4
5.	(A)	Draw logic diagram of 1-bit memory cell using DFF and explain its various functi Explain the concept of serial expansion and parallel expansion and obtain a 4 memory organization using 1-bit memory cell.	
	(B)	Explain the terms SRAM, DRAM. Illustrate the differences and specific feature these memories.	s of 4
		OR	
	(P)	Using IC 6264 (8 KB) and 74138 obtain memory organization 64 KB.	12
	(Q)	Distinguish between Volatile and Non-volatile NMOS memory cell.	4