M.Sc. Semester-III (CBCS) Examination PHYSICS

3PHY 1-ELECTRODYNAMICS-II (RADIATION & PLASMA PHYSICS)

[Maximum Marks: 80 Time: Three Hours N.B.:—All questions are compulsory and carry equal marks. 8 (a) Obtain wave equation for electric and magnetic fields in free space. 1. (b) Obtain an expression for Lienard-Wiechert potential of moving point charge and explain 8 its physical significance. OR (p) What is synchrotron radiation? Derive a relation for its radiated power and discuss the directional distribution. (q) What is radiation reaction? Discuss about its origin and derive a relation. 8 2. (a) Discuss motion of charged particle in uniform crossed electric and magnetic fields. 8 (b) Discuss motion of charged particle in magnetic field having direction of gradient 5 perpendicular to magnetic field. (c) Define first, second and third adiabatic invariants. 3 OR (p) Discuss the behavior of a charged particle in slowly time varying magnetic field. 8 (q) Explain behavior of charged particle in static magnetic field when electric field is zero. 5 3 Explain the terms Larmor's radius and guiding center. 3. (a) Explain quasi neutrality of plasma and hence deduce an expression for Debye length. 8 5 (b) Derive a relation for plasma dielectric constant. (c) Define plasma. 3

OR

htt	p://w	ww.sgbauonline.com/	
	(p)	Derive equation of continuity for plasma.	5
	(q)	Deduce the behavior of plasma fluid across magnetic field.	8
	(r)	Enlist the uses of plasma.	3
4.	(a)	Derive dispersion relation for electron plasma wave.	8
	(b)	Discuss electrostatic electron oscillations and ion waves perpendicular to magnet field.	ic 8
		OR	
	(p)	What are plasma oscillations? Deduce an expressions for frequency of plasma oscillation	s. 8
	(q)	Explain propagation of electromagnetic waves through plasma perpendicular to magnet	
		field with $E_1 \perp B_0$.	8
5.	(a)	What are whistler modes? Discuss its origin.	6
	(b)	Derive the dispersion relation for Alfven waves and discuss at in detail.	6
	(c)	Discuss the simplified model of propagation of radio waves through ionosphere.	4
		OR	
	(p)	Draw CMA diagram and indicate the region in which upper and lower hybrid resonance	ce
		is located.	6
	(q)	Explain cutoffs, for extraordinary wave.	6

(r) Describe in brief magnetronic waves.

4