12

4

10

6

M.Sc. (Part-II) Semester-III (CBCS) Examination PHYSICS

(Statistical Mechanics) Paper-3 PHY 2

		7 mper 0 7 m = 2	
Time	: Th	ree Hours] [Maximum Marks :	80
		Note: — All questions are compulsory and carry equal marks.	
1.	(A)	Derive an expression for Helmholtz free energy in term of partition function.	5
	(B)	Obtain relation between entropy and probability of a classical ensemble.	5
	(C)	Derive an expression for total energy in terms of partition function.	6
		OR	
	(P)	1 1	5
	(Q)	Show that phase trajectory of motion of a linear harmonic oscillator in phase space is ellip	
			5
	(R)	Explain partition function. Option an expression for partition function of perfect gas.	6
	- ,	What is degenerate gas?	3
	(B)	Distinguish between Bose-Einstein and Fermi-Dirac statistics.	4
	(C)	Explain the Bose-Einstein condensation.	9
	<i>(</i> 75.)	OR	_
	(P)	State the Fermi function.	3
	(Q)	Define fugacity. How does it represent the degeneracy of boson gas?	4
	(R)	Explain the chemical potential and energy of an ideal Bose-Einstein gas.	9
3.	(A)	State the condition at which electron gas is nondegenerate.	3
	(B)	Explain, how Debye modified the Einstein's theory of specific heat of a solid.	.5 .8
	(C)	Derive the Richardson-Dushman equation for thermionic emission.	8
	(D)	OR	2
	(P)	e e	3
	. ~,	Derive an expression for free energy of a diatomic gas.	5
	(R)	Deduce an expression for specific heat of a solid using Debye's theory.	_8
4.	(A)	Show that the standard relative deviation from the mean value is of order of $(1/\sqrt{3})$	N)
		in energy fluctuations. Where N is the total number of particles.	
			8
	(B)	Derive the Boltzmann's transport equation.	8
		OR	
	(P)	What is phase transition? Explain first and second order phase transitions.	8
	(Q)	Explain the fluctuations in enthalpy.	8
5.	(A)	Explain the Landau's theory of liquid He-II.	12

WPZ-8401 125

OR

(B) Why He³ and He⁴ obeyed the different statistics?

(Q) Explain the critical velocity of superflow.

(P) Give the experimentally observed properties of superfluid He-II.

