(c) Starting with Navier-Stoke's equation of motion of fluid in an electric and magnetic field, show that the original body force is equivalent to two kinds of surface force given by ^{μH}/_{4Π} (ηοΗ)δs and ^{-μH²}/_{8Π} ηδs

on each surface element δs .

d) Prove that for a perfectly conducting fluid the flux of magnetic field intensity through any closed circuit of fluid particles moving along with the fluid remain constant.

UNIT-V

- (a) Explain Laminar flow and turbulent flow with the help of experiment with Reynold's apparatus, explaining the importance of Reynold's number.
 - (b) Derive the Boundary layer equation in 2-dimensional flow.
- (c) Assuming Navier-Stokes equation of motion for a viscous incompressible fluid. Show that the quantities

$$\frac{LX}{V^2}$$
, $\frac{P}{\rho V^2}$, $\frac{V}{VL}$ are dimensionless. 8

- (d) Explain:
 - (i) Boundary thickness
 - (ii) Displacement thickness
 - (iii) Separations of boundary layer flow.
 - (iv) Boundary layer.

8

525

UBS-49981

M.A./M.Sc. Part-II (Semester-IV) (CBCS) Examination MATHEMATICS

(Fluid Dynamics-II)

Paper-404

Time—Three Hours]

[Maximum Marks—80

N.B.: — Solve ONE question from each unit.

UNIT-I

- 1. (a) Derive isentropic relations in different forms for the ratios T/T_0 , P/P_0 , and ρ/ρ_0 . Also determine the relations at sonic or critical speeds.
 - (b) Derive $\phi(x,t) = f(x-ct) + g(x+ct)$ which represents the super position of forward and a backward travelling wave each moving with speed c. Hence, find the profile $\phi(x,t)$ of a one dimensional wave propagation

if at
$$t = 0$$
, $\phi = F(x)$, $\frac{\partial \phi}{\partial t} = \ell_1(x)$.

(c) Describe a simplified model explaining shock formation in the tube with a piston. Show that if each small disturbance propagates itself at a velocity equal to the local speed of sound relative to the fluid and fluid moves with velocity u then show that velocity of propagation of disturbance = u + a = a₀ + ½ (r+1) u.

UBS-49981

(Contd.)

(d) Derive wave equation in three dimensions. Hence derive, $\phi(r, t) = \left(\frac{1}{r}\right) \{f(r-ct) + g(r+ct)\}.$ 8

UNIT-II

- (a) In a viscous fluid motion, explain rate of dilation Δ.
 Deduce equations that line principal stresses with principal rates of strain in each case when fluid is incompressible and compressible.
 - (b) Explain stress matrix. Hence find the equations of the translational motion of fluid element taking into account of surface forces and body forces in î, j, k directions.
- 4. (c) Explain the coefficient of viscosity and Laminar flow.

8

(d) Show that the stress matrix is diagonally symmetric.

9

UNIT-III

(a) Obtain Navier-Stokes equations of motion of a viscous fluid. Compare the equation of motion in case of incompressible flow with the Euler's equation of motion in inviscid flow.

- (b) For an incompressible viscous fluid flow, if the body forces are conservative, then for vorticity vector ξ, dξ/dt = (ξ.∇)q+v∇²ξ and ξ decays rapidly with time.
 Prove this.
- 6. (c) Consider a tube having uniform elliptic cross-section. Determine expression W(x,y) and hence show that y = the volume discharged through the tube per unit time = $\frac{\prod Pa^3b^3}{4\mu(a^2+b^2)}$, where the cross-section of the tube has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, when a = b.
 - (d) Show that in a steady flow through a tube of uniform circular cross section the velocity profile is parabolic.

8

UNIT-IV

- (a) Determine equation of motion of a conducting fluid and also determine an equation expressing the rate of flow of charge moving along with the fluid.
 - (b) Prove, Ferraro's law of isorotation which states that the angular velocity is constant over a magnetic stream surface when the star is rotating steadily about its axis of symmetry.

UBS-49981 2 (Contd.)

UBS-49981

3

(Contd.)