UNIT-V

9. (a) If S and T are two bounded self-adjoint positive operators on a Hilbert space H such that ST = TS and if

$$S_1 = \frac{S}{\|S\|}, S_{n+1} = S_n - S_n^2, n \ge 1, \text{ then show that}$$

 $0 \le S_n \le I.$

- (b) Show that a bounded operator P: H → H on a Hilbert space H is a projection if and only if P is self-adjoint and P² = p.
- (c) Suppose T is a positive bounded self-adjoint operator on a Hilbert space H.

Put
$$A_0 = 0$$
 and $A_{n+1} = A_n + \frac{1}{2} (T - A_n^2)$, $n \ge 0$.

Show that

- (i) $A_n \leq I$, $n \geq 0$,
- (ii) $A_n \leq A_{n+1}$, $n \geq 0$.
- (d) Prove that on a Hilbert space H, the following hold:
 - (i) $P = P_1P_2$ is a projection on H if and only if P_1 , P_2 commute. In that case P projects H onto $P_1(H) \cap P_2(H)$.
 - (ii) Two closed subspaces Y and V of H are orthogonal if and only if P_yP_y = 0.

M.Sc. Part-II (Semester—IV) (CBCS) Examination MATHEMATICS

(Functional Analysis—II)

Paper-401

Time: Three Hours]

[Maximum Marks: 80

Note: - Solve ONE question from each Unit.

UNIT-I

(a) Show that for a bounded linear operator T: H₁→ H₂, H₁, H₂ being Hilbert spaces, Hilbert-adjoint operator T*: H₂→ H₁ exists, is unique and is a bounded linear operator with || T* || = || T ||.

R

- (b) Show that every Hilbert space H is reflexive. 8
- (c) If h: H₁ × H₂→ K is a bounded sesquilinear form,
 H₁, H₂ being Hilbert spaces, then show that there is a bounded linear operator S: H₁→ H₂ such that:
 - (i) $h(x, y) = \langle Sx, y \rangle, x \in H_1, y \in H_2$
 - (ii) S is uniquely determined by h
 - (iii) ||h|| = ||S||.

8

UBS-49978

525

UBS--49978

(Contd.)

- (d) For a bounded linear operator $T: H \rightarrow H$, H being Hilbert space, show that:
 - If T is self-adjoint, <Tx, x> is real for all $x \in H$.
 - (ii) If H is complex and <Tx, x> is real for all $x \in H$, then T is self-adjoint.

UNIT---II

- (a) Show that the resolvent set $\rho(T)$ of a bounded linear 3. operator on a complex Banach space is open. 8
 - (b) For $T \in B(x, x)$, x being a complex Banach space and $p(\lambda) = a_1 \lambda^n + \dots + a_n$, $a_n \neq 0$, show that $p(\sigma(T)) = \sigma(p(T)).$
- 4. (c) For $T \in B(x, x)$, x being a complex Banach space and $\lambda, \mu \in \rho(T)$. Show that :
 - The resolvent R, of T satisfies $R_{ii} - R_{ij} = (\mu - \lambda) R_{ii}R_{ij}$
 - (ii) R_{λ} commutes with every $S \in B(x, x)$ which commutes with T.
 - (iii) $R_1R_1 = R_1R_1$.
 - (d) If $X \neq \{0\}$ is a complex Banach space and $T \in B$ (x, x), show that $\rho(T) \neq \phi$.

UNIT-III

(a) If {T_a} is a sequence of compact linear operators from a normed space X into a Banach space Y, show that if {T_} is uniformly operator convergent, then the limit operator is compact.

- Show that the set of eigenvalues of a compact linear operator $T: X \rightarrow X$, X being normed space, is countable (may be finite or empty) and the only possible point of accumulation is $\lambda = 0$.
- (c) Prove compactness of $T: P \rightarrow P$ defined by 6. $y = (\eta_i) = Tx$, where $\eta_j = \frac{\xi_j}{i^2}$, $j \ge 1$, $x = (\xi_j)$. 8
 - Show that the range R(T) of a compact linear operator $T: X \rightarrow Y$ is separable. Here X and Y are normed spaces.

UNIT---IV

- Show that the spectrum $\sigma(T)$ of a bounded self-7. adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H is real.
 - Define residual spectrum of a bounded linear operator on a complex Hilbert space H. Show that the residual spectrum of a bounded self-adjoint operator on a complex Hilbert space H is empty.
- If T is a bounded self-adjoint operator on a complex 8. Hilbert space H and m = $\lim_{\|x\|=1}$ <Tx, x>, $M = \sup_{x \in \mathbb{R}^n} \langle Tx, x \rangle$ show that $\sigma(T) \subset [m, M]$.

(d) If T is a bounded self-adjoint operator on a complex Hilbert space H and

$$m = \inf_{\|x\|=1} < Tx, x>, M = \sup_{\|x\|=1} < Tx, x> \text{ show that}$$
$$\|T\| = \max\{|m|, |m|\} = \sup_{\|x\|=1} |< Tx, x>|.$$

(Contd.)

UBS-49978

(Contd.)

UBS -49978