(d) Discuss the open isotropic model of the universe given by the RW metric:

 $ds^2=R^2 \ (t) \ [-d\alpha^2-\sin h^2 \ \alpha \ (d\theta^2+\sin^2\theta d\varphi^2)] + dt^2$ with reference to dust and radiation distribution.

8

UNIT-V

- 9. Discuss the Schwarzschild interion solution as a simple steller model.
- 10. Derive the TOV equation

$$p = \frac{-(\rho + p/c^2)(m + 4\pi kpr^3/c^4)c^2}{r(r-2m)} \text{ for }$$

the relativistic steller structure.

16

M.Sc. Part—II Semester—IV (CBCS) Examination MATHEMATICS (General Relativity and Cosmology—II) Paper—XVIII-(403)

Time: Three Hours]

[Maximum Marks: 80

Note: -Solve FIVE questions selecting one from each unit.

UNIT—I

- (a) By considering the static homogeneous and spherically symmetric universe, obtain the Einstein's model of the universe.
 - (b) Prove that there is no Doppler shift in the Einstein's universe.
- (c) Prove that the geometry of the de-Sitter universe is that of the surface of a sphere embedded in five dimensional Euclidean space.
 - (d) Discuss the velocity and acceleration of a particle in the de-Sitter universe and show that the particle at rest at origin will remain permanently at rest at the origin.

BS-49980

(Contd.)

UNIT-11

3. (a) State and explain:

Cosmological principle.

4

- (b) By making the necessary assumptions, derive the Robertson-Walker line element.
- 4. (c) Prove that the quantity $\frac{1}{a^2}$ in the line element

$$ds^{2} = -e^{g(t)} \left[\frac{dr^{2}}{1 - r^{2}/a^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\theta^{2} \right] + dt^{2} is$$

the Riemannian curvature of the spatial extent at any given time t.

(d) Considering the spatial part of the closed form of RW model, Prove that the total proper spatial volume at any given time t is $V = 2\pi^2 R^3$.

UNIT-III

- 5. (a) Discuss the motion of particle in R-W model and prove that a material particle does not experience the gravitational force.
 - (b) Prove that the equation of light trajectory in the RW universe is given by

$$r = za \tan \left(\frac{e^{-bt_1} - e^{-bt_2}}{2ab} \right).$$

(Contd.)

- 6. (c) Prove that in RW model, there exists Red shift for expanding universe and a blue shift for contracting universe.
 - (d) Prove that the equation for red shift z in terms of l is:

$$z = R'_o \ell + \frac{R'^2_o}{2} (1 + q_o) \ell^2 + O(\ell^3)$$

where q_o is the deceleration parameter.

UNIT-IV

7. (a) Obtain the fundamental equation of dynamic cosmology:

$$\dot{R}^2 + k = \frac{8\pi\rho R^2}{3}$$
.

(b) Prove that the matter dominated era of the universe is governed by the equation:

$$\left(\frac{\dot{R}}{R_o}\right)^2 = H_o^2 \left\{ 1 - 2q_o + 2q_o \cdot \frac{R_o}{R} \right\},\,$$

where the symbols have their convensional meanings.

8. (c) Derive the equation for the age of the universe to, for Friedmann closed model in the form

$$t_o = \frac{q_o}{H_o (2q_o^{-1})^{3/2}} \left\{ \cos^{-1} \left(\frac{1}{q_o} - 1 \right) - \frac{1}{q_o} \left(2q_o - 1 \right)^{1/2} \right\}.$$

8

8