UNIT-V

- (a) Define potential function and find the condition that any one parameter family of surface f(x, y, z) = c form a family of equipotential surface.
 - (b) Show that the solution of u(x, t) of P. D. E. u_t ku_{xx} = f(x, t), 0 < x < t, t > 0.
 subject to condition,

$$u(x, 0) = f(x), 0 \le x \le \ell$$

 $u(0, t) = u(\ell, t) = 0, t \ge 0,$

is unique.

8

525

10. (c) Solve the partial differential equation:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \quad \text{subject to the condition,}$$

$$0 < x < \ell, t > 0,$$

$$u(0, t) = u(\ell, t) = 0, t \ge 0$$

and u(x, 0) = f(x); $0 \le x \le \ell$.

(d) If $\Phi = \Phi(\gamma, \theta, \psi)$ is harmonic function, then prove that $\overline{\Phi} = \frac{a^2}{r} \Phi\left(\frac{a^2}{r}, \theta, \Psi\right)$ is also a harmonic function, where, (γ, θ, ψ) are the spherical polar co-ordinates and 'a' is a constant.

M.Sc. (Part-II) Semester-IV (CBCS) Examination MATHEMATICS-402

(Partial Differential Equations)

Time-Three Hours]

[Maximum Marks--80

Note: Solve one question from each unit.

UNIT-I

- (a) Prove that necessary and sufficient condition for integrability is [F, g] = 0.
 - (b) Find the complete integral of the equation $p^2x + q^2y = z$, by Jacobi's method.
- 2. (c) Explain the following terms:
 - (i) Complete Integral.
 - (ii) General Integral.
 - (iii) Singular Integral.

- 8

(d) Find the integral surface of the differential equation
 (x - y) p + (y - x - z) q = z, passing through the
 circle z = 1, x² + y² = 1.

UBS--49979

(Contd.)

UNIT-II

- 3. (a) Prove that every integral surface is generated by family of characteristic curves.
 - (b) Reduce the equation $u_{xx} x^2u_{yy} = 0$ to a canonical form.
- 4. (c) Solve the Cauchy problem for 2 z_x + y z_y = z for the initial data curve ∈: x₀ = S, y₀ = S² z₀ = s, 1 ≤ s ≤ 2.
 - (d) Reduce the equation $u_{xx} + 2xu_{xy} + x^2u_{yy} = 0$ to a canonical forms and solve wherever possible.

UNIT-III

5. (a) Find the solution of the vibration of an infinite string.
The initial conditions are:

$$y(x, 0) = f(x)$$

$$yt(x, 0) = g(x)$$

$$-\infty < x < \infty$$

where, f(x) is initial position of the string and g(x) is the initial velocity at point x.

(b) Prove that for the equation:

$$L_u = U_{xy} + \frac{1}{4}u = 0$$
, the Riemann function is $v(x, y, \alpha, \beta) = Ju(\sqrt{(x - \alpha)(y - \beta)})$.

- 6. (c) State and prove Green's theorem.
 - (d) Solve $y_n c^2$ $y_{xx} = 0$ 0 < x < 1, t > 0y(0, t) = y(1, t) = 0 and

$$y(x, 0) = x(1 - x), 0 \le x \le 1.$$

 $y(x, 0) = 0, 0 \le x \le 1.$

8

UNIT-IV

7. (a) Find the solution of the problem:

$$\nabla^2 u = u_{rr} + \frac{1}{r}u_{r} + \frac{1}{r^2}u_{\theta\theta} = 0$$
, $r < a$, subject to the boundary condition $u(a, \theta) = f(\theta)$.

- (b) Let u(x, y) be harmonic in a bounded domain D and continuous in $\overline{D} = D \cup B$. Then prove that u attains its maximum on the boundary B of D. 8
- 8. (c) State and prove uniqueness theorem for Laplace equation.
 - (d) Find the solution of the problem.

 $\nabla^2 u = u_{xx} + u_{yy} = 0$, 0 < x < a, 0 < y < b with boundary condition given below,

$$u(x, 0) = f(x), 0 \le x \le a,$$

 $u(x, b) = 0, 0 \le x \le a,$
 $u(0, y) = 0, 0 \le y \le b,$
 $u(a, y) = 0, 0 \le y \le b.$

8