M.Sc. Fourth Semester (Applied Electronics) (New) (CBS) 15064: Elective - I: Smart Sensors: paper - 4 AE 5

P. Pages: 2 AV - 3322 Time: Three Hours Max. Marks: 80 Notes: 1. Answer three question from Section A and three question from Section B. Assume suitable data wherever necessary. 2. 3. Illustrate your answer necessary with the help of neat sketches. 4. Use of pen Blue/Black ink/refill only for writing the answer book. 1. Define and explain the notion of smart sensor. Enlist its salient features. 7 b) Draw and explain a general sensing system. OR 2. a) What is the state-of-the art technology for mechanical to Electronic transitions in sensing? 7 Explain. b) Sketch and explain the effect of temperature on piezoresistive pressure sensor output. 7 3. a) Describe working principle of capacitive sensing. 6 b) What do you understand by a chemical sensor? Explain the operation of a typical gas sensor 7 with the aid of the output characteristic curve. OR 4. What is a Hall effect? How is it employed in sensors? a) 4 List any six common undesirable characteristics of semiconductor sensors. Also explain the 9 b) design areas that are commonly used to improve these characteristics. 5. What do you understand by Inherent power supply Rejection? Explain the principles of 7 a) working for a high-voltage unregulated supply. b) Justify the importance of separate versus Integrated signal conditioning with respect to 6 suitable applications. OR 6. Explain the operating principles of Sigma-Delta ADC with the help of a neat block diagram. 7 a) b) Describe integrated passive and active elements for a typical sensor. 6

SECTION - B

7.	a)	Justify the use of DSP control in sensor applications. Explain the salient features of a typical DSP.	6
	b)	Draw and explain the architecture of a typical Digital Signal Processor (DSP).	7
		OR	
8.	a)	Explain how sensor nonlinearity can be improved?	6
	b)	How Is the PWM output from the micro-controller unit used in analog sensor applications?	7
9.	a)	What do you understand by an open-loop control system? Explain.	7
	b)	What is PID control? Explain.	7
		OR	
10.	a)	What is a CISC architecture? Explain.	7
	b)	What is an adaptive control? Explain its applications in smart sensors.	7
11.	a)	Draw and explain Radar sensor with the aid of a neat schematic.	6
	b)	Explain global positioning system.	7
		Θ R	
12.	a)	Explain remote measurement of vehicle exhaust emissions with the aid of a neat schematic.	7
	b)	Explain RFID with applications to smart sensors.	6
