M.A./M.Sc. (Semester-IV) (CBCS) Examination

STATISTICS

Mathematical Programming (OR-I)

Paper—XIII

Time: Three Hours

[Maximum Marks: 80

Note: Solve either (A) or (B) from each question.

- 1. (A) (i) State and prove duality theorem.
 - (ii) Discuss the problem of degeneracy in transportation problem. Explain how one can overcome it.

OR

- (B) (i) Define assignment problem. Explain Hungarian assignment method.
 - (ii) State and prove necessary and sufficient condition for the existence of a feasible solution to the transportation problem.

 8-8
- 2. (A) (i) Give the importance of ILPP. How does the optimal solution of an ILPP compare with that of the LPP?
 - (ii) Explain Gomory's cutting plane method for the solution of an all integer programming problem.

 8–8

OR

- (B) (i) Give the advantages of the branch and bound method.
 - (ii) What is the meaning of the lower bounds and upper bounds in the branch and bound method?
- 3. (A) (i) Define general NLPP. Give the Lagrange's method for optimality.
 - (ii) What are convex and concave functions? Give the tests for concavity and convexity.

 8-8

OR

VOX-38626 (Contd.)

www.sgbauonline.com

(B) (i) Derive Kuhr Tucker conditions for the non-linear programming problem of maximizing '(x) subject to the constraints h'(x) ≤ 0 for i = 1, 2, m and X ≥ 0 where X ∈ R*. Also show that these KT conditions are sufficient iff (X) is concave and all h'(X) are convex functions of X.

- (ii) Define:
 - (a) Local optimum
 - (b) Gioca, anumum.

12 - 4

- 4. (A) (i) Explain in brief two stage programming problem.
 - (ii) What is goal programming problem? Explain goal programming model formulation with the help of an example.

OR

- (B) (i) Discuss the purpose of goal programming and dynamic programming with examples.
 - (ii) State Bellman principle of optimality and describe recursive equation approach to solve the dynamic programming problem.

 8+8
- 5. (A) (i) Show that a two person zero sum game problem can be reduced to a linear programming problem.
 - (ii) Explain the theory of dominance in the solution of rectangular games, Illustrate with example.

OR

- (B) (i) How do you solve a game when (a) Saddle point exists and (b) Saddle point does not exist?
 - (ii) Let (ai) be the pay off matrix for a two person zero sum game. If \underline{V} denotes the maximin value and \overline{V} the minimax value of game then show that $\overline{V} \geq \underline{V}$.

8-8

VOX =38626 2 125